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Volume

(Hacon-McKernan, Takayama, and Tsuji) For each integer
n > 0, ∃ a constant rn s.t. for any smooth complex
projective variety X of general type with dimension n, the
map ϕ|mKX | : X 99K Ph0(mKX )−1 is a birational embedding
for m ≥ rn.
Volume of X : vol(X ) = lim supm→∞ h0(X ,mKX )/(mn/n!).
vol(X ) = K n

X if KX is ample. (Also when X is a normal
projective variety with at worst canonical singularities and
with nef KX .)
For all smooth n-folds of general type, vol(X ) has a
positive lower bound an = 1/(rn)n.
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Smooth varieties of general type in low dimensions

dim = 1, r1 = 3, a1 = 2.
dim = 2, r2 = 5 (by Bombieri), a2 = 1. The extreme case:
a general hypersurface X10 ⊂ P(1,1,2,5).
dim = 3, r3 ≤ 57, a3 ≥ 1/1680 (by J. Chen and M. Chen).
The smallest known volume is 1/420 (Iano-Fletcher): a
resolution of the weighted projective hypersurface
X46 ⊂ P(4,5,6,7,23). |mKX | is birational⇔ m = 23 or
m ≥ 27.
dim = 4, the smallest known volume is a resolution of
X165 ⊂ P(10,12,17,33,37,55), with volume 1/830280 (by
Brown and Kasprzyk).
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In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,
1 ∃ a smooth complex projective n-fold of general type with

volume less than 1/n(n log n)/3.
2 ∃ a smooth complex projective n-fold X of general type s.t.

the linear system |mKX | does not give a birational
embedding for any m ≤ n(log n)/3.

Ballico, Pignatelli, and Tasin found smooth n-folds of general
type with volume about 1/nn, and s.t. |mKX | does not give a
birational embedding for m at most a constant times n2.
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Noether-type inequality

Surfaces of general type: vol(X ) ≥ 2pg − 4, where the
geometric genus pg = h0(X ,KX ).
(M. Chen and Z. Jiang) For every positive integer n,
∃ an > 0, bn > 0 s.t. vol(X ) ≥ anpg(X )− bn for every
smooth projective n-fold X of general type.
(J. Chen, M. Chen, and C. Jiang) 3-folds of general type:
vol(X ) ≥ (4/3)pg(X )− 10/3 if pg(X ) ≥ 11.(optimal
constants)
In high dimensions, our examples show that
an < 1/n(n log n)/3 for all sufficiently large n.
A simple approach to this implication is to take the product
of a given variety with curves of high genus, as suggested
by J. Chen and C.-J. Lai
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well-formed

The weighted projective space Y = P(a0, . . . ,an) is said to
be well-formed if gcd(a0, . . . , âj , . . . ,an) = 1 for each j . (In
other words, the analogous quotient stack
[(An+1 − 0)/Gm], where the multiplicative group Gm acts by
t(x0, . . . , xn) = (ta0x0, . . . , tanxn), has trivial stabilizer group
in codimension 1.)
A general hypersurface of degree d is well-formed⇔
gcd(a0, . . . , âi , . . . , âj , . . . ,an)|d for all i < j ,
and gcd(a0, . . . , âi , . . . ,an) = 1 for each i .
Reflexive sheaf O(m) is a line bundle⇔ m is a multiple of
every weight ai .
The intersection number

∫
Y c1(O(1))n = 1/a0 · · · an.
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Reid-Tai criterion for quotient singularities

For a positive integer r , let An/µr be the cyclic quotient
singularity of type 1

r (a1, . . . ,an) over a field, meaning that the
group µr of r th roots of unity acts by
ζ(x1, . . . , xn) = (ζa1x1, . . . , ζ

anxn).

Assume that this description is well-formed in the sense that
gcd(r ,a1, . . . , âj , . . . ,an) = 1 for j = 1, . . . ,n. Then An/µr is
canonical (resp. terminal)⇔

n∑
j=1

(iaj mod r) ≥ r

(resp. > r ) for i = 1, . . . , r − 1.
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criterion for singularities of weighted projective spaces

It suffices for Y to be canonical or terminal at each coordinate
point, [0, . . . ,0,1,0, . . . ,0].

Lemma (Ballico, Pignatelli, and Tasin)

A well-formed weighted projective space Y = P(a0, . . . ,an) is
canonical (resp. terminal)⇔ for each 0 ≤ m ≤ n,

n∑
j=0

(iaj mod am) ≥ am

(resp. > am) for i = 1, . . . ,am − 1.
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canonical (resp. terminal)⇔ for each 0 ≤ m ≤ n,

n∑
j=0

(iaj mod am) ≥ am

(resp. > am) for i = 1, . . . ,am − 1.
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Let k ≥ 2 and l ≥ 0 be integers. Ballico, Pignatelli, and Tasin
consider hypersurface X of degree d = (l + 3)k(k + 1) in
weighted projective space
Y = P(k (k+2), (k + 1)(2k−1), (k(k + 1))(l)).

Y is well-formed since k ≥ 2.
X is well-formed since d is a multiple of all weights.
Y is canonical by Lemma. Check singularities of three
types:
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1 1
k (k (k+1), (k + 1)(2k−1), (k(k + 1))(l)),
Check (2k − 1)(i(k + 1) mod k) ≥ k for i = 1, . . . , k − 1.
It’s true since i(k + 1) = i ≥ 1 mod k .

2 1
k+1(k (k+2), (k + 1)(2k−2), (k(k + 1))(l)),
Check (k + 2)(ik mod (k + 1)) ≥ k + 1 for i = 1, . . . , k .
It’s true since ik ≥ 1 mod (k + 1).

3 1
k(k+1) (k (k+2), (k + 1)(2k−1), (k(k + 1))(l−1)),Check
(k +2)(ik mod k(k +1))+(2k−1)(i(k +1) mod k(k +1)) ≥
k(k + 1) for i = 1, . . . , k(k + 1)− 1.
It’s true since k - i or (k + 1) - i for i = 1, . . . , k(k + 1)− 1,
and i(k + 1) ≥ k + 1 mod k(k + 1) if k - i ,
ik ≥ k mod k(k + 1) if (k + 1) - i .

X is canonical⇐


(a) Y is canonical.
(b) O(d) is basepoint-free line bundle since
d>0 is a multiple of all the weights.

by Kollár’s Bertini theorem.
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quasi-smooth

A closed subvariety X of a weighted projective space
P(a0, . . . ,an) is called quasi-smooth if its affine cone in
An+1 is smooth outside the origin.

Lemma (Iano-Fletcher)

A general hypersurface of degree d in P(a0, . . . ,an) is
quasi-smooth⇔

either (1) ai = d for some i,
or (2) for every nonempty subset I of {0, . . . ,n},either (a) d
is an N-linear combination of the numbers ai with i ∈ I,or
(b) there are at least |I| numbers j 6∈ I such that d − aj is an
N-linear combination of the numbers ai with i ∈ I.
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compute the volume

A general hypersurface X of degree d = (l + 3)k(k + 1) in
Y = P(k (k+2), (k + 1)(2k−1), (k(k + 1))(l)).

Adjunction formula holds:

KX = OX (d−
∑

ai)⇐


(a) X is well-formed.
(b) X is quasi-smooth since
d is a multiple of all the weights.

Thus KX = OX (1) ample. So vol(X ) = K n
X , which is d

divided by the product of all weights of Y .
vol(X ) = (l+3)k(k+1)

kk+2(k+1)2k−1(k(k+1))l = (l+3)
kk+1+l (k+1)2k−2+l .

Let W be a resolution of singularities of X . W is a smooth
complex projective n-fold of general type with
vol(W ) = vol(X ).
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Generalization

Consider hypersurface X of degree
d = (6 + l)k(k + 1)(k + 2) in
Y = P(1(3k+2), k (2k+2), (k + 1)(2k+1), (k + 2)(2k+2),
(k(k + 1))(2k+2), (k(k + 2))(2k), ((k + 1)(k + 2))(2k−2),
(k(k + 1)(k + 2))l), where l ≥ 0, k ≥ 4.
Y is well-formed since 1 occurs more than once.
X is well-formed and quasi-smooth since d is a multiple of
all the weights.
X is also canonical and KX = OX (d −

∑
ai) = OX (1).

vol(X ) = (6+l)
k6k+4+l−1(k+1)6k+l (k+2)6k+l−1 . This improves BPT’s

example.
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Generalization

Let b, l , k be integers with b ≥ 2, l ≥ 0, and k ≥ 2b − 2. For
each subset I of {0, . . . ,b − 1}, define (with j running through
0,1, . . . ,b − 1):

kI =


−1 +

∑b−1
j=0 (k + j) if |I| = 0,

− |I|+
∑

j 6∈I(k + j) if 1 ≤ |I| ≤ b − 2,
− (b − 1) + 2

∑
j 6∈I(k + j) if |I| = b − 1,

l if |I| = b.
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Let Y be the complex weighted projective space

P
((∏

j∈I

(k + j)
)(kI) : I ⊂ {0, . . . ,b − 1}

)
.

Let d = (2b + l)
∏b−1

j=0 (k + j). Then a general hypersurface
X of degree d in Y has canonical singularities and
KX = OX (1).
For X of sufficiently large dimension n, let
b = b(log n)/(2 log 2)c and k = b

√
n/(log n)2c. Then

vol(KX ) < 1/n(n log n)/3.
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Terminal Fano varieties.

(Birkar) For each integer n > 0, ∃ a constant sn s.t. for
every terminal Fano n-fold X , |−mKX | gives a birational
embedding for all m ≥ sn;
and ∃ a constant bn > 0 s.t. every terminal Fano n-fold X
has vol(−KX ) ≥ bn.
(J. Chen and M. Chen) The optimal cases:
dim = 2, X6 ⊂ P(1,1,2,3) with volume 1,
dim = 3, X66 ⊂ P(1,5,6,22,33) with volume 1/330,
dim = 4, Brown-Kasprzyk’s example
X3486 ⊂ P(1,41,42,498,1162,1743), with volume
1/498240036



Varieties of general type Construction klt varieties Construction

Terminal Fano varieties.

(Birkar) For each integer n > 0, ∃ a constant sn s.t. for
every terminal Fano n-fold X , |−mKX | gives a birational
embedding for all m ≥ sn;
and ∃ a constant bn > 0 s.t. every terminal Fano n-fold X
has vol(−KX ) ≥ bn.
(J. Chen and M. Chen) The optimal cases:
dim = 2, X6 ⊂ P(1,1,2,3) with volume 1,
dim = 3, X66 ⊂ P(1,5,6,22,33) with volume 1/330,
dim = 4, Brown-Kasprzyk’s example
X3486 ⊂ P(1,41,42,498,1162,1743), with volume
1/498240036



Varieties of general type Construction klt varieties Construction

Terminal Fano varieties.

(Birkar) For each integer n > 0, ∃ a constant sn s.t. for
every terminal Fano n-fold X , |−mKX | gives a birational
embedding for all m ≥ sn;
and ∃ a constant bn > 0 s.t. every terminal Fano n-fold X
has vol(−KX ) ≥ bn.
(J. Chen and M. Chen) The optimal cases:
dim = 2, X6 ⊂ P(1,1,2,3) with volume 1,
dim = 3, X66 ⊂ P(1,5,6,22,33) with volume 1/330,
dim = 4, Brown-Kasprzyk’s example
X3486 ⊂ P(1,41,42,498,1162,1743), with volume
1/498240036



Varieties of general type Construction klt varieties Construction

Terminal Fano varieties.

(Birkar) For each integer n > 0, ∃ a constant sn s.t. for
every terminal Fano n-fold X , |−mKX | gives a birational
embedding for all m ≥ sn;
and ∃ a constant bn > 0 s.t. every terminal Fano n-fold X
has vol(−KX ) ≥ bn.
(J. Chen and M. Chen) The optimal cases:
dim = 2, X6 ⊂ P(1,1,2,3) with volume 1,
dim = 3, X66 ⊂ P(1,5,6,22,33) with volume 1/330,
dim = 4, Brown-Kasprzyk’s example
X3486 ⊂ P(1,41,42,498,1162,1743), with volume
1/498240036



Varieties of general type Construction klt varieties Construction

Terminal Fano varieties.

(Birkar) For each integer n > 0, ∃ a constant sn s.t. for
every terminal Fano n-fold X , |−mKX | gives a birational
embedding for all m ≥ sn;
and ∃ a constant bn > 0 s.t. every terminal Fano n-fold X
has vol(−KX ) ≥ bn.
(J. Chen and M. Chen) The optimal cases:
dim = 2, X6 ⊂ P(1,1,2,3) with volume 1,
dim = 3, X66 ⊂ P(1,5,6,22,33) with volume 1/330,
dim = 4, Brown-Kasprzyk’s example
X3486 ⊂ P(1,41,42,498,1162,1743), with volume
1/498240036



Varieties of general type Construction klt varieties Construction

Terminal Fano n-fold.

Adding two more weights equals to 1 in the weighted projective
space Y .

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,
1 ∃ a complex terminal Fano n-fold X with

vol(−KX ) < 1/n(n log n)/3.
2 ∃ a complex terminal Fano n-fold X s.t. the linear system
| −mKX | does not give a birational embedding for any
m ≤ n(log n)/3.

Fujita’s conjecture: for every smooth complex projective variety
X of dimension n with an ample line bundle A, KX + (n + 2)A is
very ample.
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klt pair

Kollár proposed what may be the klt pair (X ,∆) of general
type with standard coefficients that has minimum volume.
There is some positive lower bound for such volumes, the
minimum is attained, and these volumes satisfy DCC by
Hacon-McKernan-Xu.

(X ,∆) =

(
Pn, 1

2H0 + 2
3H1 + 6

7H2 + · · ·+ cn+1−1
cn+1

Hn+1

)
,

where Hi are n + 2 general hyperplanes and c0, c1, c2, . . .
is Sylvester’s sequence, c0 = 2 and cm+1 = cm(cm−1) + 1.
The volume of KX + ∆ is

1/(cn+2 − 1)n < 1/22n
.

The optimal example is “Hurwitz orbifold” of volume 1/42 in
dimension 1.
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klt varieties

For a klt surface X with ample canonical class, the smallest
known volume is 1/48983, by an example of Alexeev and Liu.
In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer n ≥ 2, ∃ a complex klt n-fold X with ample
canonical class s.t. vol(KX ) < 1/22n

.

log(vol(KX )) of our klt varieties is asymptotic to
log(vol(KX + ∆)) in Kollár’s klt pair above, as n→∞.
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canonical class s.t. vol(KX ) < 1/22n

.

log(vol(KX )) of our klt varieties is asymptotic to
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Construct weighted projective space P(a0, . . . ,an+1).

Sylvester’s sequence: c0 = 2, c1 = 3, c2 = 7, c3 = 43,
c4 = 1807, . . . and cn+1 = cn(cn − 1) + 1.
n ≥ 2. Let y = cn−1 − 1 and

a2 = y3 + y + 1
a1 = y(y + 1)(1 + a2)− a2

a0 = y(1 + a2 + a1)− a1.

Let x = 1 + a0 + a1 + a2,
d = yx = c0 · · · cn−2x = y7 +y6 +y5 +4y4 +2y3 +2y2 +2y ,
and ai+3 = c0 · · · ĉi · · · cn−2x for 0 ≤ i ≤ n − 2.
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construct klt varieties with ample canonical class

Let X be a general hypersurface of degree d in P(a0, . . . ,an+1).
Then X is a klt with dimension n and KX ample,

vol(KX ) =
1

yn−3xn−2a0a1a2
.

Thus vol(KX ) < 1
(cn−1−1)7n−1 and hence vol(KX ) < 1

22n .

which should be fairly close to optimal.
It is about the 7/8th power of the volume of Kollár’s
conjecturally optimal klt pair (X ,∆), since
vol(KX + ∆) = 1/(cn+2 − 1)n .

= 1/(cn−1 − 1)8n.
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some weights (the biggest ones) divide d and the ratios
close to Sylvester’s sequence ci .
Let d

ai+3

.
= ci for 0 ≤ i ≤ n − 2. Let d = c0 · · · cn−2x for

some integer x .
d −

∑
ai equals 1⇔ x = 1 + a0 + a1 + a2.
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From a criterion for quasi-smoothness proved by
Iano-Fletcher, we get a sufficient condition for
quasi-smooth:

For positive integers d and a0, . . . ,an+1, a general hypersurface
of degree d in P(a0, . . . ,an+1) is quasi-smooth if d ≥ ai for
every i and there is a positive integer r such that:

1 ai |d if i ≥ r ,

2 d − ar−1 ≡ 0 (mod ar−2), . . . , d − a1 ≡ 0 (mod a0), and
d − a0 ≡ 0 (mod ar−1).

Choose other weights ai to make X quasi-smooth.
a0,a1,a2 satisfy a "cycle" of congruences:

d−a2 = 0( mod a1),d−a1 = 0( mod a0),d−a0 = 0( mod a2),



Varieties of general type Construction klt varieties Construction

From a criterion for quasi-smoothness proved by
Iano-Fletcher, we get a sufficient condition for
quasi-smooth:

For positive integers d and a0, . . . ,an+1, a general hypersurface
of degree d in P(a0, . . . ,an+1) is quasi-smooth if d ≥ ai for
every i and there is a positive integer r such that:

1 ai |d if i ≥ r ,

2 d − ar−1 ≡ 0 (mod ar−2), . . . , d − a1 ≡ 0 (mod a0), and
d − a0 ≡ 0 (mod ar−1).

Choose other weights ai to make X quasi-smooth.
a0,a1,a2 satisfy a "cycle" of congruences:

d−a2 = 0( mod a1),d−a1 = 0( mod a0),d−a0 = 0( mod a2),



Varieties of general type Construction klt varieties Construction

From a criterion for quasi-smoothness proved by
Iano-Fletcher, we get a sufficient condition for
quasi-smooth:

For positive integers d and a0, . . . ,an+1, a general hypersurface
of degree d in P(a0, . . . ,an+1) is quasi-smooth if d ≥ ai for
every i and there is a positive integer r such that:

1 ai |d if i ≥ r ,

2 d − ar−1 ≡ 0 (mod ar−2), . . . , d − a1 ≡ 0 (mod a0), and
d − a0 ≡ 0 (mod ar−1).

Choose other weights ai to make X quasi-smooth.
a0,a1,a2 satisfy a "cycle" of congruences:

d−a2 = 0( mod a1),d−a1 = 0( mod a0),d−a0 = 0( mod a2),



Varieties of general type Construction klt varieties Construction

From a criterion for quasi-smoothness proved by
Iano-Fletcher, we get a sufficient condition for
quasi-smooth:

For positive integers d and a0, . . . ,an+1, a general hypersurface
of degree d in P(a0, . . . ,an+1) is quasi-smooth if d ≥ ai for
every i and there is a positive integer r such that:

1 ai |d if i ≥ r ,

2 d − ar−1 ≡ 0 (mod ar−2), . . . , d − a1 ≡ 0 (mod a0), and
d − a0 ≡ 0 (mod ar−1).

Choose other weights ai to make X quasi-smooth.
a0,a1,a2 satisfy a "cycle" of congruences:

d−a2 = 0( mod a1),d−a1 = 0( mod a0),d−a0 = 0( mod a2),



Varieties of general type Construction klt varieties Construction

From a criterion for quasi-smoothness proved by
Iano-Fletcher, we get a sufficient condition for
quasi-smooth:

For positive integers d and a0, . . . ,an+1, a general hypersurface
of degree d in P(a0, . . . ,an+1) is quasi-smooth if d ≥ ai for
every i and there is a positive integer r such that:

1 ai |d if i ≥ r ,

2 d − ar−1 ≡ 0 (mod ar−2), . . . , d − a1 ≡ 0 (mod a0), and
d − a0 ≡ 0 (mod ar−1).

Choose other weights ai to make X quasi-smooth.
a0,a1,a2 satisfy a "cycle" of congruences:

d−a2 = 0( mod a1),d−a1 = 0( mod a0),d−a0 = 0( mod a2),



Varieties of general type Construction klt varieties Construction

From a criterion for quasi-smoothness proved by
Iano-Fletcher, we get a sufficient condition for
quasi-smooth:

For positive integers d and a0, . . . ,an+1, a general hypersurface
of degree d in P(a0, . . . ,an+1) is quasi-smooth if d ≥ ai for
every i and there is a positive integer r such that:

1 ai |d if i ≥ r ,

2 d − ar−1 ≡ 0 (mod ar−2), . . . , d − a1 ≡ 0 (mod a0), and
d − a0 ≡ 0 (mod ar−1).

Choose other weights ai to make X quasi-smooth.
a0,a1,a2 satisfy a "cycle" of congruences:

d−a2 = 0( mod a1),d−a1 = 0( mod a0),d−a0 = 0( mod a2),



Varieties of general type Construction klt varieties Construction

construct klt varieties with ample canonical class

dim = 2, X316 ⊂ P(158,85,61,11) with volume
2/57035 .

= 3.5× 10−5.
dim = 3, X340068 ⊂ P(170034,113356,47269,9185,223)
with volume 1/5487505331993410 .

= 1.8× 10−16.

dim = 4, volume about 1.4× 10−44. The smallest known
volume for a klt 4-fold with ample canonical class is about
1.4× 10−47.
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sketch of proof

Our construction of klt varieties with ample canonical class:
Sylvester’s sequence {ci}.
n ≥ 2. Let y = cn−1 − 1 and
a2 = y3 + y + 1,
a1 = y(y + 1)(1 + a2)− a2,
a0 = y(1 + a2 + a1)− a1.

Let x = 1 + a0 + a1 + a2,
d = yx = c0 · · · cn−2x = y7 +y6 +y5 +4y4 +2y3 +2y2 +2y ,
and ai+3 = c0 · · · ĉi · · · cn−2x for 0 ≤ i ≤ n − 2.
X ⊂ P(a0, . . . ,an+1) is a general hypersurface of degree d .
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sketch of proof when r = 3

X is klt since it has only cyclic quotient singularities.
X is quasi-smooth since d − a2 = (y2 + 1)a1,d − a1 =
(y + 1)a0,d − a0 = (y4 + 3y − 1)a2. (by Lemma)

KX = OX (d −
∑

ai)⇐

{
(a) X is well-formed
(b) X is quasi-smooth

vol(KX ) = vol(OX (1)) = d
a0···an+1

= 1
yn−3xn−2a0a1a2
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sketch of proof when r = 3

In terms of y = cn−1 − 1, we have
a2 = y3 + y + 1 > y3,
a1 = y5 + y4 + 3y2 + y − 1 > y5,
a0 = y6 + 3y3 − y2 + 1 > y6,
x = y6 + y5 + y4 + 4y3 + 2y2 + 2y + 2 > y6.
Thus vol(KX ) < 1/y7n−1 = 1/(cn−1 − 1)7n−1.
There is a constant c .

= 1.264 such that ci is the closest
integer to c2i+1

for all i ≥ 0. This implies the crude
statement that vol(KX ) < 1

22n for all n ≥ 2.
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for all i ≥ 0. This implies the crude
statement that vol(KX ) < 1

22n for all n ≥ 2.
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sketch of proof when r = 3

In terms of y = cn−1 − 1, we have
a2 = y3 + y + 1 > y3,
a1 = y5 + y4 + 3y2 + y − 1 > y5,
a0 = y6 + 3y3 − y2 + 1 > y6,
x = y6 + y5 + y4 + 4y3 + 2y2 + 2y + 2 > y6.
Thus vol(KX ) < 1/y7n−1 = 1/(cn−1 − 1)7n−1.
There is a constant c .

= 1.264 such that ci is the closest
integer to c2i+1

for all i ≥ 0. This implies the crude
statement that vol(KX ) < 1

22n for all n ≥ 2.
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Better klt varieties with ample canonical class

For any odd number r ≥ 3 and any dimension n ≥ r − 1, we
give an example with weights chosen to satisfy a cycle of r
congruences.

log(vol(KX ))
log(vol(KY +∆)) →

2r−1
2r as n→∞.

For r = 3, this is the example above.
When r = 5, n = 4, it is a a general hypersurface of degree
147565206676 in
P(73782603338,39714616165,28421358181,5458415771,
187980859,232361) with .

= 7.4× 10−45. (Better)



Varieties of general type Construction klt varieties Construction

Better klt varieties with ample canonical class

For any odd number r ≥ 3 and any dimension n ≥ r − 1, we
give an example with weights chosen to satisfy a cycle of r
congruences.

log(vol(KX ))
log(vol(KY +∆)) →

2r−1
2r as n→∞.

For r = 3, this is the example above.
When r = 5, n = 4, it is a a general hypersurface of degree
147565206676 in
P(73782603338,39714616165,28421358181,5458415771,
187980859,232361) with .

= 7.4× 10−45. (Better)



Varieties of general type Construction klt varieties Construction

Better klt varieties with ample canonical class

For any odd number r ≥ 3 and any dimension n ≥ r − 1, we
give an example with weights chosen to satisfy a cycle of r
congruences.

log(vol(KX ))
log(vol(KY +∆)) →

2r−1
2r as n→∞.

For r = 3, this is the example above.
When r = 5, n = 4, it is a a general hypersurface of degree
147565206676 in
P(73782603338,39714616165,28421358181,5458415771,
187980859,232361) with .

= 7.4× 10−45. (Better)



Varieties of general type Construction klt varieties Construction

Better klt varieties with ample canonical class

For any odd number r ≥ 3 and any dimension n ≥ r − 1, we
give an example with weights chosen to satisfy a cycle of r
congruences.

log(vol(KX ))
log(vol(KY +∆)) →

2r−1
2r as n→∞.

For r = 3, this is the example above.
When r = 5, n = 4, it is a a general hypersurface of degree
147565206676 in
P(73782603338,39714616165,28421358181,5458415771,
187980859,232361) with .

= 7.4× 10−45. (Better)



Varieties of general type Construction klt varieties Construction

Better klt varieties with ample canonical class

For any odd number r ≥ 3 and any dimension n ≥ r − 1, we
give an example with weights chosen to satisfy a cycle of r
congruences.

log(vol(KX ))
log(vol(KY +∆)) →

2r−1
2r as n→∞.

For r = 3, this is the example above.
When r = 5, n = 4, it is a a general hypersurface of degree
147565206676 in
P(73782603338,39714616165,28421358181,5458415771,
187980859,232361) with .

= 7.4× 10−45. (Better)



Varieties of general type Construction klt varieties Construction

Better klt varieties with ample canonical class

For any odd number r ≥ 3 and any dimension n ≥ r − 1, we
give an example with weights chosen to satisfy a cycle of r
congruences.

log(vol(KX ))
log(vol(KY +∆)) →

2r−1
2r as n→∞.

For r = 3, this is the example above.
When r = 5, n = 4, it is a a general hypersurface of degree
147565206676 in
P(73782603338,39714616165,28421358181,5458415771,
187980859,232361) with .

= 7.4× 10−45. (Better)



Varieties of general type Construction klt varieties Construction

Thank you!
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