Varieties of general type with small volume

Chengxi Wang UCLA

August 27, 2021

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, \exists a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map $\varphi_{|mK_X|}: X \longrightarrow P^{h^0(mK_X)-1}$ is a birational embedding for $m \ge r_n$.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, \exists a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map $\varphi_{\mid mK_X \mid} : X \longrightarrow P^{h^0(mK_X)-1}$ is a birational embedding for $m > r_0$.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, \exists a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map $\varphi_{|mK_X|}: X \dashrightarrow P^{h^0(mK_X)-1}$ is a birational embedding for $m \ge r_n$.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, \exists a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map $\varphi_{|mK_X|}: X \dashrightarrow P^{h^0(mK_X)-1}$ is a birational embedding for $m \ge r_n$.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, \exists a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map $\varphi_{|mK_X|}: X \dashrightarrow P^{h^0(mK_X)-1}$ is a birational embedding for $m \ge r_n$.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, \exists a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map $\varphi_{|mK_X|}: X \dashrightarrow P^{h^0(mK_X)-1}$ is a birational embedding for $m \ge r_n$.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- (Hacon-M^cKernan, Takayama, and Tsuji) For each integer n > 0, \exists a constant r_n s.t. for any smooth complex projective variety X of general type with dimension n, the map $\varphi_{|mK_X|}: X \dashrightarrow P^{h^0(mK_X)-1}$ is a birational embedding for $m \ge r_n$.
- Volume of X: $vol(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $vol(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X .)
- For all smooth *n*-folds of general type, vol(X) has a positive lower bound $a_n = 1/(r_n)^n$.

- dim = 1, $r_1 = 3$, $a_1 = 2$.
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, $r_3 \le 57$, $a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or m > 27.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- dim = 1, $r_1 = 3$, $a_1 = 2$.
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, $r_3 \le 57$, $a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or m > 27.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- dim = 1, $r_1 = 3$, $a_1 = 2$.
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, $r_3 \le 57$, $a_3 \ge 1/1680$ (by J. Chen and M. Chen) The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or m > 27.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- dim = 1, $r_1 = 3$, $a_1 = 2$.
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, $r_3 \le 57$, $a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or m > 27.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- dim = 1, $r_1 = 3$, $a_1 = 2$.
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, $r_3 \le 57$, $a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or $m \ge 27$.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- dim = 1, $r_1 = 3$, $a_1 = 2$.
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, $r_3 \le 57$, $a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or m > 27.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- dim = 1, $r_1 = 3$, $a_1 = 2$.
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, $r_3 \le 57$, $a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or m > 27.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

- dim = 1, $r_1 = 3$, $a_1 = 2$.
- dim = 2, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- dim = 3, $r_3 \le 57$, $a_3 \ge 1/1680$ (by J. Chen and M. Chen). The smallest known volume is 1/420 (lano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4,5,6,7,23)$. $|mK_X|$ is birational $\Leftrightarrow m = 23$ or m > 27.
- dim = 4, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume 1/830280 (by Brown and Kasprzyk).

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- **1** a smooth complex projective n-fold of general type with volume less than $1/n^{(n \log n)/3}$.
- ② ∃ a smooth complex projective n-fold X of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m < n^{(\log n)/3}$.

Ballico, Pignatelli, and Tasin found smooth n-folds of general type with volume about $1/n^n$, and s.t. $|mK_X|$ does not give a birational embedding for m at most a constant times n^2 .

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- **1** a smooth complex projective n-fold of general type with volume less than $1/n^{(n \log n)/3}$.
- ② ∃ a smooth complex projective n-fold X of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m \le n^{(\log n)/3}$.

Ballico, Pignatelli, and Tasin found smooth n-folds of general type with volume about $1/n^n$, and s.t. $|mK_X|$ does not give a birational embedding for m at most a constant times n^2 .

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- **1** a smooth complex projective n-fold of general type with volume less than $1/n^{(n \log n)/3}$.
- ② ∃ a smooth complex projective n-fold X of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m \le n^{(\log n)/3}$.

Ballico, Pignatelli, and Tasin found smooth n-folds of general type with volume about $1/n^n$, and s.t. $|mK_X|$ does not give a birational embedding for m at most a constant times n^2

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- **1** a smooth complex projective n-fold of general type with volume less than $1/n^{(n \log n)/3}$.
- ② ∃ a smooth complex projective n-fold X of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m \le n^{(\log n)/3}$.

Ballico, Pignatelli, and Tasin found smooth n-folds of general type with volume about $1/n^n$, and s.t. $|mK_X|$ does not give a birational embedding for m at most a constant times n^2 .

- Surfaces of general type: $vol(X) \ge 2p_g 4$, where the geometric genus $p_g = h^0(X, K_X)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists a_n > 0$, $b_n > 0$ s.t. $vol(X) \ge a_n p_g(X) b_n$ for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $vol(X) \ge (4/3)p_g(X) 10/3$ if $p_g(X) \ge 11$.(optimal constants)
- In high dimensions, our examples show that a_n < 1/n^{(n log n)/3} for all sufficiently large n.
 A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- Surfaces of general type: $vol(X) \ge 2p_g 4$, where the geometric genus $p_g = h^0(X, K_X)$.
- (M. Chen and Z. Jiang) For every positive integer n,
 ∃ a_n > 0, b_n > 0 s.t. vol(X) ≥ a_np_g(X) b_n for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $vol(X) \ge (4/3)p_g(X) 10/3$ if $p_g(X) \ge 11$.(optimal constants)
- In high dimensions, our examples show that a_n < 1/n^{(n log n)/3} for all sufficiently large n.
 A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- Surfaces of general type: $vol(X) \ge 2p_g 4$, where the geometric genus $p_g = h^0(X, K_X)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists a_n > 0$, $b_n > 0$ s.t. $vol(X) \ge a_n p_g(X) b_n$ for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $vol(X) \ge (4/3)p_g(X) 10/3$ if $p_g(X) \ge 11$.(optimal constants)
- In high dimensions, our examples show that a_n < 1/n^{(n log n)/3} for all sufficiently large n.
 A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- Surfaces of general type: $vol(X) \ge 2p_g 4$, where the geometric genus $p_g = h^0(X, K_X)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists a_n > 0$, $b_n > 0$ s.t. $vol(X) \ge a_n p_g(X) b_n$ for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $vol(X) \ge (4/3)p_g(X) 10/3$ if $p_g(X) \ge 11$.(optimal constants)
- In high dimensions, our examples show that a_n < 1/n^{(n log n)/3} for all sufficiently large n.
 A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- Surfaces of general type: $vol(X) \ge 2p_g 4$, where the geometric genus $p_g = h^0(X, K_X)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists a_n > 0$, $b_n > 0$ s.t. $vol(X) \ge a_n p_g(X) b_n$ for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $vol(X) \ge (4/3)p_g(X) 10/3$ if $p_g(X) \ge 11$.(optimal constants)

In high dimensions, our examples show that

 $a_n < 1/n^{(n \log n)/3}$ for all sufficiently large n.

A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- Surfaces of general type: $vol(X) \ge 2p_g 4$, where the geometric genus $p_g = h^0(X, K_X)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists a_n > 0$, $b_n > 0$ s.t. $vol(X) \ge a_n p_g(X) b_n$ for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $vol(X) \ge (4/3)p_g(X) 10/3$ if $p_g(X) \ge 11$.(optimal constants)
- In high dimensions, our examples show that a_n < 1/n^{(n log n)/3} for all sufficiently large n.
 A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai

- The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be *well-formed* if $gcd(a_0, \ldots, \widehat{a_j}, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(A^{n+1} 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree d is well-formed \in gcd $(a_0, \ldots, \widehat{a_i}, \ldots, \widehat{a_j}, \ldots, a_n)|d$ for all i < j, and gcd $(a_0, \ldots, \widehat{a_i}, \ldots, a_n) = 1$ for each i.
- Reflexive sheaf O(m) is a line bundle $\Leftrightarrow m$ is a multiple of every weight a_i .
- The intersection number $\int_{V} c_1(O(1))^n = 1/a_0 \cdots a_n$

- The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be *well-formed* if $gcd(a_0, \ldots, \widehat{a_j}, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(A^{n+1} 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree d is well-formed \Leftrightarrow gcd $(a_0, \ldots, \widehat{a_i}, \ldots, \widehat{a_j}, \ldots, a_n)|d$ for all i < j, and gcd $(a_0, \ldots, \widehat{a_i}, \ldots, a_n) = 1$ for each i.
- Reflexive sheaf O(m) is a line bundle $\Leftrightarrow m$ is a multiple of every weight a_i .
- The intersection number $\int_{V} c_1(O(1))^n = 1/a_0 \cdots a_n$

- The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be *well-formed* if $gcd(a_0, \ldots, \widehat{a_j}, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(A^{n+1} 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree d is well-formed \Leftrightarrow gcd $(a_0, \ldots, \widehat{a_i}, \ldots, \widehat{a_j}, \ldots, a_n) | d$ for all i < j, and gcd $(a_0, \ldots, \widehat{a_i}, \ldots, a_n) = 1$ for each i.
- Reflexive sheaf O(m) is a line bundle $\Leftrightarrow m$ is a multiple of every weight a_i .
- The intersection number $\int_{V} c_1(O(1))^n = 1/a_0 \cdots a_n$

- The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be *well-formed* if $gcd(a_0, \ldots, \widehat{a_j}, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(A^{n+1} 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree d is well-formed \Leftrightarrow gcd $(a_0, \ldots, \widehat{a_i}, \ldots, \widehat{a_j}, \ldots, a_n)|d$ for all i < j, and gcd $(a_0, \ldots, \widehat{a_i}, \ldots, a_n) = 1$ for each i.
- Reflexive sheaf O(m) is a line bundle $\Leftrightarrow m$ is a multiple of every weight a_i .
- The intersection number $\int_{V} c_1(O(1))^n = 1/a_0 \cdots a_n$

- The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be *well-formed* if $gcd(a_0, \ldots, \widehat{a_j}, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(A^{n+1} 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree d is well-formed \Leftrightarrow gcd $(a_0, \ldots, \widehat{a_i}, \ldots, \widehat{a_j}, \ldots, a_n)|d$ for all i < j, and gcd $(a_0, \ldots, \widehat{a_i}, \ldots, a_n) = 1$ for each i.
- Reflexive sheaf O(m) is a line bundle

 m is a multiple of every weight a_i.
- The intersection number $\int_{V} c_1(O(1))^n = 1/a_0 \cdots a_n$

- The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be *well-formed* if $gcd(a_0, \ldots, \widehat{a_j}, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(A^{n+1} 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)
- A general hypersurface of degree d is well-formed \Leftrightarrow $\gcd(a_0,\ldots,\widehat{a_i},\ldots,\widehat{a_j},\ldots,a_n)|d$ for all i < j, and $\gcd(a_0,\ldots,\widehat{a_i},\ldots,a_n) = 1$ for each i.
- Reflexive sheaf O(m) is a line bundle $\Leftrightarrow m$ is a multiple of every weight a_i .
- The intersection number $\int_{Y} c_1(O(1))^n = 1/a_0 \cdots a_n$.

Reid-Tai criterion for quotient singularities

For a positive integer r, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1,\ldots,a_n)$ over a field, meaning that the group μ_r of rth roots of unity acts by $\zeta(x_1,\ldots,x_n)=(\zeta^{a_1}x_1,\ldots,\zeta^{a_n}x_n)$.

Assume that this description is well-formed in the sense that $gcd(r, a_1, ..., \widehat{a_j}, ..., a_n) = 1$ for j = 1, ..., n. Then A^n/μ_r is canonical (resp. terminal) \Leftrightarrow

$$\sum_{j=1}^{n} (ia_j \bmod r) \ge r$$

(resp. > r) for i = 1, ..., r - 1.

For a positive integer r, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1,\ldots,a_n)$ over a field, meaning that the group μ_r of rth roots of unity acts by $\zeta(x_1,\ldots,x_n)=(\zeta^{a_1}x_1,\ldots,\zeta^{a_n}x_n)$.

Assume that this description is well-formed in the sense that $gcd(r, a_1, ..., \widehat{a_j}, ..., a_n) = 1$ for j = 1, ..., n. Then A^n/μ_r is canonical (resp. terminal) \Leftrightarrow

$$\sum_{j=1}^{n} (ia_j \bmod r) \ge r$$

(resp. > r) for i = 1, ..., r - 1.

Reid-Tai criterion for quotient singularities

For a positive integer r, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1,\ldots,a_n)$ over a field, meaning that the group μ_r of rth roots of unity acts by $\zeta(x_1,\ldots,x_n)=(\zeta^{a_1}x_1,\ldots,\zeta^{a_n}x_n)$.

Assume that this description is well-formed in the sense that $gcd(r, a_1, ..., \widehat{a_j}, ..., a_n) = 1$ for j = 1, ..., n. Then A^n/μ_r is canonical (resp. terminal) \Leftrightarrow

$$\sum_{j=1}^{n} (ia_j \bmod r) \ge r$$

(resp. > r) for i = 1, ..., r - 1.

Reid-Tai criterion for quotient singularities

For a positive integer r, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1,\ldots,a_n)$ over a field, meaning that the group μ_r of rth roots of unity acts by $\zeta(x_1,\ldots,x_n)=(\zeta^{a_1}x_1,\ldots,\zeta^{a_n}x_n)$.

Assume that this description is well-formed in the sense that $gcd(r, a_1, ..., \widehat{a_j}, ..., a_n) = 1$ for j = 1, ..., n. Then A^n/μ_r is canonical (resp. terminal) \Leftrightarrow

$$\sum_{j=1}^n (ia_j \bmod r) \ge r$$

(resp. > r) for i = 1, ..., r - 1.

criterion for singularities of weighted projective spaces

It suffices for Y to be canonical or terminal at each coordinate point, $[0, \dots, 0, 1, 0, \dots, 0]$.

Lemma (Ballico, Pignatelli, and Tasin)

A well-formed weighted projective space $Y = P(a_0, ..., a_n)$ is canonical (resp. terminal) \Leftrightarrow for each $0 \le m \le n$,

$$\sum_{j=0}^n (ia_j \bmod a_m) \ge a_m$$

 $(resp. > a_m) \text{ for } i = 1, ..., a_m - 1.$

criterion for singularities of weighted projective spaces

It suffices for Y to be canonical or terminal at each coordinate point, $[0, \dots, 0, 1, 0, \dots, 0]$.

Lemma (Ballico, Pignatelli, and Tasin)

A well-formed weighted projective space $Y = P(a_0, ..., a_n)$ is canonical (resp. terminal) \Leftrightarrow for each $0 \le m \le n$,

$$\sum_{j=0}^{n} (ia_j \bmod a_m) \ge a_m$$

$$(resp. > a_m) \text{ for } i = 1, ..., a_m - 1.$$

Let $k \ge 2$ and $l \ge 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree d = (l+3)k(k+1) in weighted projective space $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)})$.

$$T = F(\mathbf{K}^{(1)}, (\mathbf{K} + 1)^{(1)}), (\mathbf{K}(\mathbf{K} + 1)^{(1)})$$

- Y is well-formed since $k \ge 2$
- X is well-formed since d is a multiple of all weights
- Y is canonical by Lemma. Check singularities of three types:

$$Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}).$$

- Y is well-formed since $k \ge 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:

$$Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}).$$

- Y is well-formed since $k \ge 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:

$$Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}).$$

- Y is well-formed since $k \ge 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:

$$Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}).$$

- Y is well-formed since $k \ge 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:

 $\mathbf{1}_{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$

klt varieties

 $\frac{1}{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) \ge k$ for i = 1, ..., k-1.

klt varieties

Varieties of general type

- $\frac{1}{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) \ge k$ for i = 1, ..., k-1. It's true since $i(k + 1) = i > 1 \mod k$.

Varieties of general type

 $\frac{1}{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) \ge k$ for i = 1, ..., k-1. It's true since $i(k + 1) = i > 1 \mod k$.

klt varieties

- $\frac{1}{k+1}(k^{(k+2)},(k+1)^{(2k-2)},(k(k+1))^{(l)}),$

- $\mathbf{1}_{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) \ge k$ for i = 1, ..., k-1. It's true since $i(k + 1) = i > 1 \mod k$.
- $\frac{1}{k+1}(k^{(k+2)},(k+1)^{(2k-2)},(k(k+1))^{(l)}),$ Check $(k + 2)(ik \mod (k + 1)) \ge k + 1$ for i = 1, ..., k.

- $\mathbf{1}_{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) \ge k$ for i = 1, ..., k-1. It's true since $i(k + 1) = i > 1 \mod k$.
- $\frac{1}{k+1}(k^{(k+2)},(k+1)^{(2k-2)},(k(k+1))^{(l)}),$ Check $(k + 2)(ik \mod (k + 1)) \ge k + 1$ for i = 1, ..., k. It's true since $ik > 1 \mod (k + 1)$.

- $\frac{1}{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) > k$ for i = 1, ..., k-1. It's true since $i(k + 1) = i \ge 1 \mod k$.
- Check $(k + 2)(ik \mod (k + 1)) \ge k + 1$ for i = 1, ..., k. It's true since $ik > 1 \mod (k + 1)$.
- $\frac{1}{k(k+1)}(k^{(k+2)},(k+1)^{(2k-1)},(k(k+1))^{(l-1)})$,Check

- ① $\frac{1}{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i=1,\ldots,k-1$. It's true since $i(k+1)=i\ge 1 \mod k$.
- 2 $\frac{1}{k+1}(k^{(k+2)},(k+1)^{(2k-2)},(k(k+1))^{(l)}),$ Check $(k+2)(ik \mod (k+1)) \ge k+1$ for $i=1,\ldots,k$. It's true since $ik \ge 1 \mod (k+1)$.
- $\frac{1}{k(k+1)}(k^{(k+2)},(k+1)^{(2k-1)},(k(k+1))^{(l-1)}), \text{Check} \\ (k+2)(ik \bmod k(k+1)) + (2k-1)(i(k+1) \bmod k(k+1)) \geq \\ k(k+1) \text{ for } i=1,\ldots,k(k+1)-1.$

It's true since $k \nmid i$ or $(k + 1) \nmid i$ for i = 1, ..., k(k + 1) - 1, and $i(k + 1) \ge k + 1 \mod k(k + 1)$ if $k \nmid i$, $ik \ge k \mod k(k + 1)$ if $(k + 1) \nmid i$.

(a) Y is canonical.

X is canonical $\leftarrow \left\{ (b) \text{ O(d) is basepoint-free line bundle since } d>0 \text{ is a multiple of all the weights.} \right\}$

- $\frac{1}{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) > k$ for i = 1, ..., k-1. It's true since $i(k + 1) = i > 1 \mod k$.
- $\frac{1}{k+1}(k^{(k+2)},(k+1)^{(2k-2)},(k(k+1))^{(l)}),$ Check $(k + 2)(ik \mod (k + 1)) \ge k + 1$ for i = 1, ..., k. It's true since $ik \ge 1 \mod (k+1)$.
- $\frac{1}{k(k+1)}(k^{(k+2)},(k+1)^{(2k-1)},(k(k+1))^{(l-1)})$,Check $(k+2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) >$ k(k+1) for $i=1,\ldots,k(k+1)-1$. It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i = 1, \ldots, k(k+1) - 1$,

① $\frac{1}{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i=1,\ldots,k-1$. It's true since $i(k+1)=i\ge 1 \mod k$.

klt varieties

- ② $\frac{1}{k+1}(k^{(k+2)},(k+1)^{(2k-2)},(k(k+1))^{(l)}),$ Check $(k+2)(ik \mod (k+1)) \ge k+1$ for $i=1,\ldots,k$. It's true since $ik \ge 1 \mod (k+1).$
- 3 $\frac{1}{k(k+1)}(k^{(k+2)},(k+1)^{(2k-1)},(k(k+1))^{(l-1)})$, Check $(k+2)(ik \mod k(k+1))+(2k-1)(i(k+1) \mod k(k+1)) \ge k(k+1)$ for $i=1,\ldots,k(k+1)-1$. It's true since $k \nmid i$ or $(k+1) \nmid i$ for $i=1,\ldots,k(k+1)-1$, and $i(k+1) \ge k+1 \mod k(k+1)$ if $k \nmid i$,

 $ik \ge k \mod k(k+1)$ if $(k+1) \nmid i$.

(a) Y is canonical.

X is canonical \Leftarrow $\{(b) \mid O(d) \mid s \mid basepoint-free line bundle since <math>d>0 \mid s \mid a \mid basepoint-free line bundle since <math>d>0 \mid s \mid a \mid basepoint-free line bundle since <math>d>0 \mid a \mid basepoint-free line bundle since bundle since <math>d>0 \mid a \mid basepoint-free line bundle since bun$

Varieties of general type

- ① $\frac{1}{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) \ge k$ for $i=1,\ldots,k-1$. It's true since $i(k+1)=i\ge 1 \mod k$.
- 2 $\frac{1}{k+1}(k^{(k+2)},(k+1)^{(2k-2)},(k(k+1))^{(l)}),$ Check $(k+2)(ik \mod (k+1)) \ge k+1$ for $i=1,\ldots,k$. It's true since $ik \ge 1 \mod (k+1)$.
- $\frac{1}{k(k+1)}(k^{(k+2)},(k+1)^{(2k-1)},(k(k+1))^{(l-1)}), \text{Check} \\ (k+2)(ik \bmod k(k+1)) + (2k-1)(i(k+1) \bmod k(k+1)) \geq \\ k(k+1) \text{ for } i=1,\ldots,k(k+1)-1. \\ \text{It's true since } k \nmid i \text{ or } (k+1) \nmid i \text{ for } i=1,\ldots,k(k+1)-1, \\ \text{and } i(k+1) \geq k+1 \bmod k(k+1) \text{ if } k \nmid i, \\ ik \geq k \bmod k(k+1) \text{ if } (k+1) \nmid i.$
 - (a) Y is canonical.
- X is canonical $\leftarrow \left\{ egin{aligned} (b) \ \mathsf{O}(\mathsf{d}) \ \mathsf{is} \ \mathsf{basepoint-free} \ \mathsf{line} \ \mathsf{bundle} \ \mathsf{since} \end{aligned}
 ight.$

Varieties of general type

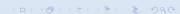
 $1 \frac{1}{k}(k^{(k+1)},(k+1)^{(2k-1)},(k(k+1))^{(l)}),$ Check $(2k-1)(i(k+1) \mod k) \ge k$ for i = 1, ..., k-1. It's true since $i(k + 1) = i > 1 \mod k$.

klt varieties

- Check $(k+2)(ik \mod (k+1)) \ge k+1$ for i = 1, ..., k. It's true since $ik > 1 \mod (k + 1)$.
- $\frac{1}{k(k+1)} (k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l-1)}), \text{Check}$ $(k+2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) \ge$ k(k+1) for $i=1,\ldots,k(k+1)-1$. It's true since $k \nmid i$ or $(k + 1) \nmid i$ for i = 1, ..., k(k + 1) - 1, and $i(k + 1) > k + 1 \mod k(k + 1)$ if $k \nmid i$, $ik > k \mod k(k+1)$ if $(k+1) \nmid i$.

 $X \text{ is canonical} \leftarrow \begin{cases} (a) \text{ Y is canonical.} \\ (b) \text{ O(d) is basepoint-free line bundle since} \\ \text{d>0 is a multiple of all the weights.} \end{cases}$

by Kollár's Bertini theorem.



• A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of {0,...,n}, either (a) d is an N-linear combination of the numbers a_i with i ∈ I, or (b) there are at least |I| numbers j ∉ I such that d − a_j is an N-linear combination of the numbers a_i with i ∈ I.

• A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of {0,...,n}, either (a) d is an N-linear combination of the numbers a_i with i ∈ I, or (b) there are at least |I| numbers j ∉ I such that d − a_j is an N-linear combination of the numbers a_i with i ∈ I.

• A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of {0,...,n}, either (a) d is an N-linear combination of the numbers a_i with i ∈ I, or
 (b) there are at least |I| numbers j ∉ I such that d a_j is an N-linear combination of the numbers a_i with i ∈ I.

• A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of {0,...,n}, either (a) d is an N-linear combination of the numbers a_i with i ∈ I, or (b) there are at least |I| numbers j ∉ I such that d − a_j is an N-linear combination of the numbers a_i with i ∈ I.

• A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of {0,...,n}, either (a) d is an N-linear combination of the numbers a_i with i ∈ I, or
 (b) there are at least | I | numbers j ∉ I such that d a_i is an

• A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called *quasi-smooth* if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (lano-Fletcher)

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of $\{0, ..., n\}$, either (a) d is an N-linear combination of the numbers a_i with $i \in I$, or (b) there are at least |I| numbers $j \notin I$ such that $d a_j$ is an N-linear combination of the numbers a_i with $i \in I$.

A general hypersurface
$$X$$
 of degree $d = (l+3)k(k+1)$ in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)})$.

Adjunction formula holds

$$K_X = O_X(d - \sum a_i) \leftarrow egin{cases} (a) \ X \ \text{is well-formed.} \\ (b) \ X \ \text{is quasi-smooth since} \\ d \ \text{is a multiple of all the weights.} \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^{\nu}$, which is divided by the product of all weights of Y. $vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}.$

A general hypersurface
$$X$$
 of degree $d = (l+3)k(k+1)$ in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)})$.

Adjunction formula holds:

$$K_X = O_X(d - \sum a_i) \leftarrow egin{cases} (a) \ X \ \text{is well-formed.} \\ (b) \ X \ \text{is quasi-smooth since} \\ d \ \text{is a multiple of all the weights.} \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^{\prime\prime}$, which is a divided by the product of all weights of Y. $vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}.$

A general hypersurface X of degree d = (l+3)k(k+1) in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)})$.

Adjunction formula holds:

$$K_X = O_X(d - \sum a_i) \Leftarrow egin{cases} (a) \ X \ \text{is well-formed.} \\ (b) \ X \ \text{is quasi-smooth since} \\ d \ \text{is a multiple of all the weights.} \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is d divided by the product of all weights of Y.

$$vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}$$

A general hypersurface X of degree d = (l+3)k(k+1) in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)})$.

Adjunction formula holds:

$$K_X = O_X(d - \sum a_i) \leftarrow egin{cases} (a) \ X \ \text{is well-formed.} \\ (b) \ X \ \text{is quasi-smooth since} \\ d \ \text{is a multiple of all the weights.} \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is d divided by the product of all weights of Y. $vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}$.

A general hypersurface
$$X$$
 of degree $d = (l+3)k(k+1)$ in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)})$.

Adjunction formula holds:

$$K_X = O_X(d - \sum a_i) \Leftarrow egin{cases} (a) \ X \ \text{is well-formed.} \\ (b) \ X \ \text{is quasi-smooth since} \\ d \ \text{is a multiple of all the weights.} \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is d divided by the product of all weights of Y. $vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}.$

• Let W be a resolution of singularities of X. W is a smooth

A general hypersurface X of degree d = (l+3)k(k+1) in $Y = P(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)})$.

Adjunction formula holds:

$$K_X = O_X(d - \sum a_i) \Leftarrow egin{cases} (a) \ X \ \text{is well-formed.} \\ (b) \ X \ \text{is quasi-smooth since} \\ d \ \text{is a multiple of all the weights.} \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is d divided by the product of all weights of Y. $vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}$.

Generalization

$$d = (6+I)k(k+1)(k+2)$$
 in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k+1)^{(2k+1)}, (k+2)^{(2k+2)}, (k(k+1))^{(2k+2)}, (k(k+2))^{(2k)}, ((k+1)(k+2))^{(2k-2)}, (k(k+1)(k+2))^{I})$, where $I \ge 0, k \ge 4$.

- Y is well-formed since 1 occurs more than once
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- *X* is also canonical and $K_X = O_X(d \sum a_i) = O_X(1)$.
- $\circ \ vol(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT's example.

$$d = (6+I)k(k+1)(k+2)$$
 in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k+1)^{(2k+1)}, (k+2)^{(2k+2)}, (k(k+1))^{(2k+2)}, (k(k+2))^{(2k)}, ((k+1)(k+2))^{(2k-2)}, (k(k+1)(k+2))^{I})$, where $I \ge 0, k \ge 4$.

- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d \sum a_i) = O_X(1)$.
- $\circ \ vol(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT's example.

Generalization

$$d = (6+I)k(k+1)(k+2) \text{ in }$$

$$Y = P(1^{(3k+2)}, k^{(2k+2)}, (k+1)^{(2k+1)}, (k+2)^{(2k+2)}, (k(k+1))^{(2k+2)}, (k(k+2))^{(2k)}, ((k+1)(k+2))^{(2k-2)}, (k(k+1)(k+2))^{I}), \text{ where } I \ge 0, k \ge 4.$$

- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d \sum a_i) = O_X(1)$.
- $\circ \ vol(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT's example.

- d = (6+I)k(k+1)(k+2) in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k+1)^{(2k+1)}, (k+2)^{(2k+2)}, (k(k+1))^{(2k+2)}, (k(k+2))^{(2k)}, ((k+1)(k+2))^{(2k-2)}, (k(k+1)(k+2))^{I}), \text{ where } I \ge 0, k \ge 4.$
- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d \sum a_i) = O_X(1)$.
- $vol(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT's example.

Generalization

$$d = (6+I)k(k+1)(k+2)$$
 in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k+1)^{(2k+1)}, (k+2)^{(2k+2)}, (k(k+1))^{(2k+2)}, (k(k+2))^{(2k)}, ((k+1)(k+2))^{(2k-2)}, (k(k+1)(k+2))^{I})$, where $I \ge 0, k \ge 4$.

- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d \sum a_i) = O_X(1)$.
- $vol(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT's example.

$$k_{I} = \begin{cases} -1 + \sum_{j=0}^{b-1} (k+j) & \text{if } |I| = 0, \\ -|I| + \sum_{j \notin I} (k+j) & \text{if } 1 \leq |I| \leq b-2 \\ -(b-1) + 2 \sum_{j \notin I} (k+j) & \text{if } |I| = b-1, \\ I & \text{if } |I| = b. \end{cases}$$

$$k_{I} = \begin{cases} -1 + \sum_{j=0}^{b-1} (k+j) & \text{if } |I| = 0, \\ -|I| + \sum_{j \notin I} (k+j) & \text{if } 1 \le |I| \le b-2, \\ -(b-1) + 2 \sum_{j \notin I} (k+j) & \text{if } |I| = b-1, \\ |I| = b. \end{cases}$$

$$k_{I} = \begin{cases} -1 + \sum_{j=0}^{b-1} (k+j) & \text{if } |I| = 0, \\ -|I| + \sum_{j \notin I} (k+j) & \text{if } 1 \le |I| \le b-2, \\ -(b-1) + 2 \sum_{j \notin I} (k+j) & \text{if } |I| = b-1, \\ |I| = b. \end{cases}$$

$$k_{I} = \begin{cases} -1 + \sum_{j=0}^{b-1} (k+j) & \text{if } |I| = 0, \\ -|I| + \sum_{j \notin I} (k+j) & \text{if } 1 \leq |I| \leq b-2, \\ -(b-1) + 2 \sum_{j \notin I} (k+j) & \text{if } |I| = b-1, \\ & \text{if } |I| = b. \end{cases}$$

$$k_{I} = \begin{cases} -1 + \sum_{j=0}^{b-1} (k+j) & \text{if } |I| = 0, \\ -|I| + \sum_{j \notin I} (k+j) & \text{if } 1 \leq |I| \leq b-2, \\ -(b-1) + 2 \sum_{j \notin I} (k+j) & \text{if } |I| = b-1, \\ I & \text{if } |I| = b. \end{cases}$$

$$P\bigg(\big(\prod_{j\in I} (k+j)\big)^{(k_I)}: I\subset \{0,\ldots,b-1\}\bigg).$$

Let $d = (2b+l) \prod_{j=0}^{b-1} (k+j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_X = O_X(1)$.

• For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2\log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

$$vol(K_X) < 1/n^{(n\log n)/3}$$

$$P\bigg(\big(\prod_{j\in I} (k+j)\big)^{(k_I)}: I\subset \{0,\ldots,b-1\}\bigg).$$

Let $d = (2b+l) \prod_{j=0}^{b-1} (k+j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_X = O_X(1)$.

• For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2\log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

$$vol(K_X) < 1/n^{(n\log n)/3}$$

$$P\bigg(\big(\prod_{j\in I}(k+j)\big)^{(k_I)}:I\subset\{0,\ldots,b-1\}\bigg).$$

Let $d = (2b+l) \prod_{j=0}^{b-1} (k+j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_X = O_X(1)$.

• For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2\log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

 $vol(K_X) < 1/n^{(n\log n)/3}$

$$P\bigg(\big(\prod_{j\in I}(k+j)\big)^{(k_I)}:I\subset\{0,\ldots,b-1\}\bigg).$$

Let $d = (2b + l) \prod_{j=0}^{b-1} (k+j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_X = O_X(1)$.

• For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2\log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

$$vol(K_X) < 1/n^{(n \log n)/3}$$
.

- (Birkar) For each integer n > 0, ∃ a constant s_n s.t. for every terminal Fano n-fold X, |-mK_X| gives a birational embedding for all m ≥ s_n;
 and ∃ a constant b_n > 0 s.t. every terminal Fano n-fold >
 - has $vol(-K_X) \ge b_n$.
- (J. Chen and M. Chen) The optimal cases: dim = 2, $X_6 \subset P(1, 1, 2, 3)$ with volume 1, dim = 3, $X_{66} \subset P(1, 5, 6, 22, 33)$ with volume 1/330
- dim = 4, Brown-Kasprzyk's example $X_{3486} \subset P(1,41,42,498,1162,1743)$, with volume 1/498240036

- (Birkar) For each integer n > 0, \exists a constant s_n s.t. for every terminal Fano n-fold X, $|-mK_X|$ gives a birational embedding for all $m \ge s_n$; and \exists a constant $b_n > 0$ s.t. every terminal Fano n-fold X has $vol(-K_X) \ge b_n$.
- (J. Chen and M. Chen) The optimal cases: dim = 2, $X_6 \subset P(1, 1, 2, 3)$ with volume 1, dim = 3, $X_{66} \subset P(1, 5, 6, 22, 33)$ with volume 1/330
- dim = 4, Brown-Kasprzyk's example $X_{3486} \subset P(1,41,42,498,1162,1743)$, with volume 1/498240036

- (Birkar) For each integer n > 0, \exists a constant s_n s.t. for every terminal Fano n-fold X, $|-mK_X|$ gives a birational embedding for all $m \ge s_n$; and \exists a constant $b_n > 0$ s.t. every terminal Fano n-fold X has $vol(-K_X) \ge b_n$.
- (J. Chen and M. Chen) The optimal cases: dim = 2, $X_6 \subset P(1, 1, 2, 3)$ with volume 1, dim = 3, $X_{66} \subset P(1, 5, 6, 22, 33)$ with volume 1/330
- dim = 4, Brown-Kasprzyk's example $X_{3486} \subset P(1,41,42,498,1162,1743)$, with volume 1/498240036

- (Birkar) For each integer n > 0, \exists a constant s_n s.t. for every terminal Fano n-fold X, $|-mK_X|$ gives a birational embedding for all $m \ge s_n$; and \exists a constant $b_n > 0$ s.t. every terminal Fano n-fold X has $vol(-K_X) \ge b_n$.
- (J. Chen and M. Chen) The optimal cases: dim = 2, $X_6 \subset P(1, 1, 2, 3)$ with volume 1, dim = 3, $X_{66} \subset P(1, 5, 6, 22, 33)$ with volume 1/330,
- dim = 4, Brown-Kasprzyk's example $X_{3486} \subset P(1,41,42,498,1162,1743)$, with volume 1/498240036

- (Birkar) For each integer n > 0, \exists a constant s_n s.t. for every terminal Fano n-fold X, $|-mK_X|$ gives a birational embedding for all $m \ge s_n$; and \exists a constant $b_n > 0$ s.t. every terminal Fano n-fold X has $vol(-K_X) \ge b_n$.
- (J. Chen and M. Chen) The optimal cases:
 dim = 2, X₆ ⊂ P(1, 1, 2, 3) with volume 1,
 dim = 3, X₆₆ ⊂ P(1, 5, 6, 22, 33) with volume 1/330,
- dim = 4, Brown-Kasprzyk's example $X_{3486} \subset P(1, 41, 42, 498, 1162, 1743)$, with volume 1/498240036

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- **1 a** complex terminal Fano n-fold X with $vol(-K_X) < 1/n^{(n \log n)/3}$.
- ② ∃ a complex terminal Fano n-fold X s.t. the linear system $|-mK_X|$ does not give a birational embedding for any $m < n^{(\log n)/3}$.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- **1** ∃ a complex terminal Fano n-fold X with $vol(-K_X) < 1/n^{(n \log n)/3}$.
- ② ∃ a complex terminal Fano n-fold X s.t. the linear system $|-mK_X|$ does not give a birational embedding for any $m \le n^{(\log n)/3}$.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- **1** ∃ a complex terminal Fano n-fold X with $vol(-K_X) < 1/n^{(n \log n)/3}$.
- ② ∃ a complex terminal Fano n-fold X s.t. the linear system $|-mK_X|$ does not give a birational embedding for any $m \le n^{(\log n)/3}$.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

- **1** ∃ a complex terminal Fano n-fold X with $vol(-K_X) < 1/n^{(n \log n)/3}$.
- ② ∃ a complex terminal Fano n-fold X s.t. the linear system $|-mK_X|$ does not give a birational embedding for any $m \le n^{(\log n)/3}$.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-McKernan-Xu.

$$(X,\Delta)=\left(P^n,\frac{1}{2}H_0+\frac{2}{3}H_1+\frac{6}{7}H_2+\cdots+\frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$
 where H_i are $n+2$ general hyperplanes and c_0,c_1,c_2,\ldots is Sylvester's sequence, $c_0=2$ and $c_{m+1}=c_m(c_m-1)+1$ The volume of $K_X+\Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}$$
.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-McKernan-Xu.

$$(X,\Delta)=\left(P^n,\frac{1}{2}H_0+\frac{2}{3}H_1+\frac{6}{7}H_2+\cdots+\frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$
 where H_i are $n+2$ general hyperplanes and c_0,c_1,c_2,\ldots is Sylvester's sequence, $c_0=2$ and $c_{m+1}=c_m(c_m-1)+1$ The volume of $K_V+\Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}$$
.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

$$(X,\Delta)=\left(P^n,\frac{1}{2}H_0+\frac{2}{3}H_1+\frac{6}{7}H_2+\cdots+\frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$
 where H_i are $n+2$ general hyperplanes and c_0,c_1,c_2,\ldots is Sylvester's sequence, $c_0=2$ and $c_{m+1}=c_m(c_m-1)+1$ The volume of $K_X+\Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}$$
.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^oKernan-Xu.

$$(X,\Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$

is Sylvester's sequence, $c_0=2$ and $c_{m+1}=c_m(c_m-1)+1$ The volume of $K_X+\Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}$$
.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^oKernan-Xu.

$$(X, \Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$
 where H_i are $n+2$ general hyperplanes and c_0, c_1, c_2, \dots

is Sylvester's sequence, $c_0=2$ and $c_{m+1}=c_m(c_m-1)+1$ The volume of $K_X+\Delta$ is

$$1/(c_{n+2}-1)^n < 1/2^{2^n}$$
.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^oKernan-Xu.

$$(X, \Delta) = \left(P^n, \frac{1}{2}H_0 + \frac{2}{3}H_1 + \frac{6}{7}H_2 + \dots + \frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$

where H_i are $n+2$ general hyperplanes and c_0, c_1, c_2, \dots

is Sylvester's sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$.

The volume of $K_X + \Delta$ is

$$1/(c_{n+2}-1)^n<1/2^{2^n}$$
.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

$$(X,\Delta)=\left(P^n,\frac{1}{2}H_0+\frac{2}{3}H_1+\frac{6}{7}H_2+\cdots+\frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$
 where H_i are $n+2$ general hyperplanes and c_0,c_1,c_2,\ldots is Sylvester's sequence, $c_0=2$ and $c_{m+1}=c_m(c_m-1)+1$. The volume of $K_X+\Delta$ is

$$1/(c_{n+2}-1)^n<1/2^{2^n}$$
.

- Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume.
- There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M^cKernan-Xu.

$$(X,\Delta)=\left(P^n,\frac{1}{2}H_0+\frac{2}{3}H_1+\frac{6}{7}H_2+\cdots+\frac{c_{n+1}-1}{c_{n+1}}H_{n+1}\right),$$
 where H_i are $n+2$ general hyperplanes and c_0,c_1,c_2,\ldots is Sylvester's sequence, $c_0=2$ and $c_{m+1}=c_m(c_m-1)+1$. The volume of $K_X+\Delta$ is

$$1/(c_{n+2}-1)^n<1/2^{2^n}$$
.

klt varieties

For a klt surface X with ample canonical class, the smallest known volume is 1/48983, by an example of Alexeev and Liu. In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \ge 2$, \exists a complex klt n-fold X with ample canonical class s.t. $vol(K_X) < 1/2^{2^n}$.

 $\log(vol(K_X))$ of our klt varieties is asymptotic to $\log(vol(K_X + \Delta))$ in Kollár's klt pair above, as $n \to \infty$.

klt varieties

For a klt surface X with ample canonical class, the smallest known volume is 1/48983, by an example of Alexeev and Liu. In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \ge 2$, \exists a complex klt n-fold X with ample canonical class s.t. $vol(K_X) < 1/2^{2^n}$.

 $\log(vol(K_X))$ of our klt varieties is asymptotic to $\log(vol(K_X + \Delta))$ in Kollár's klt pair above, as $n \to \infty$.

klt varieties

For a klt surface X with ample canonical class, the smallest known volume is 1/48983, by an example of Alexeev and Liu. In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \ge 2$, \exists a complex klt n-fold X with ample canonical class s.t. $vol(K_X) < 1/2^{2^n}$.

 $\log(vol(K_X))$ of our klt varieties is asymptotic to $\log(vol(K_X + \Delta))$ in Kollár's klt pair above, as $n \to \infty$.

- Construct weighted projective space $P(a_0, ..., a_{n+1})$.
- Sylvester's sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$, ... and $c_{n+1} = c_n(c_n 1) + 1$.
- $n \ge 2$. Let $y = c_{n-1} 1$ and

$$a_2 = y^3 + y + 1$$

 $a_1 = y(y+1)(1+a_2) - a_2$
 $a_0 = y(1+a_2+a_1) - a_1$.

• Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for 0 < i < n-2.

- Construct weighted projective space $P(a_0, ..., a_{n+1})$.
- Sylvester's sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$,... and $c_{n+1} = c_n(c_n 1) + 1$.
- $n \ge 2$. Let $y = c_{n-1} 1$ and

$$a_2 = y^3 + y + 1$$

 $a_1 = y(y+1)(1+a_2) - a_2$
 $a_0 = y(1+a_2+a_1) - a_1$.

• Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for 0 < i < n-2.

- Construct weighted projective space $P(a_0, ..., a_{n+1})$.
- Sylvester's sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$,... and $c_{n+1} = c_n(c_n 1) + 1$.
- $n \ge 2$. Let $y = c_{n-1} 1$ and

$$a_2 = y^3 + y + 1$$

 $a_1 = y(y+1)(1+a_2) - a_2$
 $a_0 = y(1+a_2+a_1) - a_1$.

• Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.

- Construct weighted projective space $P(a_0, ..., a_{n+1})$.
- Sylvester's sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$,... and $c_{n+1} = c_n(c_n 1) + 1$.
- $n \ge 2$. Let $y = c_{n-1} 1$ and

$$a_2 = y^3 + y + 1$$

 $a_1 = y(y+1)(1+a_2) - a_2$
 $a_0 = y(1+a_2+a_1) - a_1$.

• Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.

Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$.

Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus
$$vol(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$$
 and hence $vol(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n = 1/(c_{n+1} - 1)^{8n}$.

Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus
$$vol(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$$
 and hence $vol(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n \doteq 1/(c_{n+1} - 1)^{8n}$.

Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus
$$vol(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$$
 and hence $vol(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n \doteq 1/(c_{n+1} - 1)^{8n}$.

Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $\operatorname{vol}(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $\operatorname{vol}(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n \doteq 1/(c_{n+1} - 1)^{8n}$.

Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $\operatorname{vol}(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $\operatorname{vol}(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal.

It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n = 1/(c_{n-1} - 1)^{8n}$.

Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $\operatorname{vol}(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $\operatorname{vol}(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since

Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $\operatorname{vol}(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $\operatorname{vol}(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal. It is about the 7/8th power of the volume of Kollár's conjecturally optimal klt pair (X, Δ) , since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n \doteq 1/(c_{n-1} - 1)^{8n}$.

- some weights (the biggest ones) divide d and the ratios close to Sylvester's sequence c_i.
 - Let $\frac{d}{a_{i+3}} \doteq c_i$ for $0 \le i \le n-2$. Let $d = c_0 \cdots c_{n-2} x$ for some integer x.
- $d \sum a_i$ equals $1 \Leftrightarrow x = 1 + a_0 + a_1 + a_2$.

 some weights (the biggest ones) divide d and the ratios close to Sylvester's sequence c_i.

Let
$$\frac{d}{a_{i+3}} \doteq c_i$$
 for $0 \le i \le n-2$. Let $d = c_0 \cdots c_{n-2} x$ for some integer x .

• $d - \sum a_i$ equals $1 \Leftrightarrow x = 1 + a_0 + a_1 + a_2$

- some weights (the biggest ones) divide d and the ratios close to Sylvester's sequence c_i . Let $\frac{d}{a_{i+3}} \doteq c_i$ for $0 \le i \le n-2$. Let $d = c_0 \cdots c_{n-2} x$ for some integer x.
- ullet $d-\sum a_i$ equals $1\Leftrightarrow x=1+a_0+a_1+a_2$.

- some weights (the biggest ones) divide *d* and the ratios close to Sylvester's sequence *c_i*.
 Let d/(a_{i+3} = c_i for 0 ≤ i ≤ n − 2. Let d = c₀ ··· c_{n-2}x for some integer x.
- $d \sum a_i$ equals $1 \Leftrightarrow x = 1 + a_0 + a_1 + a_2$.

- some weights (the biggest ones) divide *d* and the ratios close to Sylvester's sequence *c_i*.
 Let d/(a_{i+3} = c_i for 0 ≤ i ≤ n − 2. Let d = c₀ ··· c_{n-2}x for some integer x.
- $d \sum a_i$ equals $1 \Leftrightarrow x = 1 + a_0 + a_1 + a_2$.

- \bigcirc $a_i|d$ if $i \geq r$,
- ② $d a_{r-1} \equiv 0 \pmod{a_{r-2}}, \ldots, d a_1 \equiv 0 \pmod{a_0}$, and $d a_0 \equiv 0 \pmod{a_{r-1}}$.
 - Choose other weights a_i to make X quasi-smooth. a₀, a₁, a₂ satisfy a "cycle" of congruences:

$$d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2},$$

- \bigcirc $a_i|d$ if $i \geq r$,
- ② $d a_{r-1} \equiv 0 \pmod{a_{r-2}}, \ldots, d a_1 \equiv 0 \pmod{a_0}$, and $d a_0 \equiv 0 \pmod{a_{r-1}}$.
- Choose other weights a_i to make X quasi-smooth.
 a₀, a₁, a₂ satisfy a "cycle" of congruences:

$$d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2}$$

- ② $d a_{r-1} \equiv 0 \pmod{a_{r-2}}, \ldots, d a_1 \equiv 0 \pmod{a_0}$, and $d a_0 \equiv 0 \pmod{a_{r-1}}$.
- Choose other weights a_i to make X quasi-smooth.
 a₀, a₁, a₂ satisfy a "cycle" of congruences:

$$d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2}$$

For positive integers d and a_0, \ldots, a_{n+1} , a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \ge a_i$ for every i and there is a positive integer r such that:

- \bigcirc $a_i|d$ if $i \geq r$,
- ② $d a_{r-1} \equiv 0 \pmod{a_{r-2}}, \ldots, d a_1 \equiv 0 \pmod{a_0}$, and $d a_0 \equiv 0 \pmod{a_{r-1}}$.
- Choose other weights a_i to make X quasi-smooth.
 a₀, a₁, a₂ satisfy a "cycle" of congruences:

 $d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2}$

For positive integers d and a_0, \ldots, a_{n+1} , a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \ge a_i$ for every i and there is a positive integer r such that:

- \bigcirc $a_i|d$ if $i \geq r$,
- ② $d a_{r-1} \equiv 0 \pmod{a_{r-2}}, \ldots, d a_1 \equiv 0 \pmod{a_0}$, and $d a_0 \equiv 0 \pmod{a_{r-1}}$.
 - Choose other weights a_i to make X quasi-smooth.
 a₀, a₁, a₂ satisfy a "cycle" of congruences:

 $d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2}$

- \bigcirc $a_i|d$ if $i \geq r$,
- ② $d a_{r-1} \equiv 0 \pmod{a_{r-2}}, \ldots, d a_1 \equiv 0 \pmod{a_0}$, and $d a_0 \equiv 0 \pmod{a_{r-1}}$.
 - Choose other weights a_i to make X quasi-smooth.
 a₀, a₁, a₂ satisfy a "cycle" of congruences:

$$d-a_2 = 0 \pmod{a_1}, d-a_1 = 0 \pmod{a_0}, d-a_0 = 0 \pmod{a_2},$$

- dim = 2, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \doteq 3.5 \times 10^{-5}$.
- dim = 3, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223) with volume <math>1/5487505331993410 \doteq 1.8 \times 10^{-16}$.
- dim = 4, volume about 1.4×10^{-44} . The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47} .

- dim = 2, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \doteq 3.5 \times 10^{-5}$.
- dim = 3, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \doteq 1.8 \times 10^{-16}$.
- dim = 4, volume about 1.4×10^{-44} . The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47} .

- dim = 2, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \doteq 3.5 \times 10^{-5}$.
- dim = 3, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \doteq 1.8 \times 10^{-16}$.
- dim = 4, volume about 1.4×10^{-44} . The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47} .

- dim = 2, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \doteq 3.5 \times 10^{-5}$.
- dim = 3, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \doteq 1.8 \times 10^{-16}$.
- dim = 4, volume about 1.4×10^{-44} . The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47} .

- Sylvester's sequence $\{c_i\}$.
- $n \ge 2$. Let $y = c_{n-1} 1$ and $a_2 = y^3 + y + 1$, $a_1 = y(y+1)(1+a_2) a_2$, $a_0 = y(1+a_2+a_1) a_1$.
- Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$ and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.
- $X \subset P(a_0, \ldots, a_{n+1})$ is a general hypersurface of degree d.

sketch of proof

- Sylvester's sequence $\{c_i\}$.
- $n \ge 2$. Let $y = c_{n-1} 1$ and $a_2 = y^3 + y + 1$, $a_1 = y(y+1)(1+a_2) a_2$,

$$a_0 = y(1 + a_2 + a_1) - a_1.$$

- Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$ and $a_{i+3} = c_0 \cdots \hat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.
- $X \subset P(a_0, \ldots, a_{n+1})$ is a general hypersurface of degree d.

sketch of proof

- Sylvester's sequence $\{c_i\}$.
- $n \ge 2$. Let $y = c_{n-1} 1$ and $a_2 = y^3 + y + 1$, $a_1 = y(y+1)(1+a_2) a_2$, $a_0 = y(1+a_2+a_1) a_1$.
- Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.
- $X \subset P(a_0, ..., a_{n+1})$ is a general hypersurface of degree d.

sketch of proof

- Sylvester's sequence $\{c_i\}$.
- $n \ge 2$. Let $y = c_{n-1} 1$ and $a_2 = y^3 + y + 1$, $a_1 = y(y+1)(1+a_2) a_2$, $a_0 = y(1+a_2+a_1) a_1$.
- Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \widehat{c_i} \cdots c_{n-2}x$ for $0 \le i \le n-2$.
- $X \subset P(a_0, \dots, a_{n+1})$ is a general hypersurface of degree d.

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d a_2 = (y^2 + 1)a_1, d a_1 = (y + 1)a_0, d a_0 = (y^4 + 3y 1)a_2$. (by Lemma)

$$K_X = O_X(d - \sum a_i) \Leftarrow \begin{cases} (a) \ X \text{ is well-formed} \\ (b) \ X \text{ is quasi-smooth} \end{cases}$$

•
$$vol(K_X) = vol(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{V^{n-3} X^{n-2} a_0 a_1 a_2}$$

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d a_2 = (y^2 + 1)a_1, d a_1 = (y + 1)a_0, d a_0 = (y^4 + 3y 1)a_2$. (by Lemma)

$$K_X = O_X(d - \sum a_i) \Leftarrow \begin{cases} (a) \text{ X is well-formed} \\ (b) \text{ X is quasi-smooth} \end{cases}$$

•
$$vol(K_X) = vol(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3} x^{n-2} a_0 a_1 a_2}$$

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d a_2 = (y^2 + 1)a_1, d a_1 = (y + 1)a_0, d a_0 = (y^4 + 3y 1)a_2$. (by Lemma)

$$K_X = O_X(d - \sum a_i) \leftarrow \begin{cases} (a) \text{ X is well-formed} \\ (b) \text{ X is quasi-smooth} \end{cases}$$

•
$$vol(K_X) = vol(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3} x^{n-2} a_0 a_1 a_2}$$

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d a_2 = (y^2 + 1)a_1, d a_1 = (y + 1)a_0, d a_0 = (y^4 + 3y 1)a_2$. (by Lemma)

$$K_X = O_X(d - \sum a_i) \leftarrow \begin{cases} (a) \text{ X is well-formed} \\ (b) \text{ X is quasi-smooth} \end{cases}$$

•
$$vol(K_X) = vol(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3} x^{n-2} a_0 a_1 a_2}$$

- In terms of $y = c_{n-1} 1$, we have $a_2 = y^3 + y + 1 > y^3$, $a_1 = y^5 + y^4 + 3y^2 + y 1 > y^5$, $a_0 = y^6 + 3y^3 y^2 + 1 > y^6$, $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$ Thus $vol(K_X) < 1/v^{7n-1} = 1/(c_{n-1} 1)^{7n-1}$
- There is a constant c = 1.264 such that c_i is the closest integer to $c^{2^{i+1}}$ for all $i \ge 0$. This implies the crude statement that $vol(K_X) < \frac{1}{2^{2^n}}$ for all $n \ge 2$.

- In terms of $y = c_{n-1} 1$, we have $a_2 = y^3 + y + 1 > y^3$, $a_1 = y^5 + y^4 + 3y^2 + y 1 > y^5$, $a_0 = y^6 + 3y^3 y^2 + 1 > y^6$, $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$ Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} 1)^{7n-1}$.
- There is a constant c = 1.264 such that c_i is the closest integer to $c^{2^{i+1}}$ for all $i \ge 0$. This implies the crude statement that $vol(K_X) < \frac{1}{2^{2^n}}$ for all $n \ge 2$.

- In terms of $y = c_{n-1} 1$, we have $a_2 = y^3 + y + 1 > y^3$, $a_1 = y^5 + y^4 + 3y^2 + y 1 > y^5$, $a_0 = y^6 + 3y^3 y^2 + 1 > y^6$, $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$ Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} 1)^{7n-1}$.
- There is a constant c = 1.264 such that c_i is the closest integer to $c^{2^{i+1}}$ for all $i \ge 0$. This implies the crude statement that $vol(K_X) < \frac{1}{22^n}$ for all $n \ge 2$.

- In terms of $y = c_{n-1} 1$, we have $a_2 = y^3 + y + 1 > y^3$, $a_1 = y^5 + y^4 + 3y^2 + y 1 > y^5$, $a_0 = y^6 + 3y^3 y^2 + 1 > y^6$, $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$. Thus $vol(Ky) < 1/y^{7n-1} = 1/(c_{n-1} 1)^{7n-1}$.
- There is a constant c = 1.264 such that c_i is the closest integer to $c^{2^{i+1}}$ for all $i \ge 0$. This implies the crude statement that $vol(K_X) < \frac{1}{2^{2^n}}$ for all $n \ge 2$.

- In terms of $y = c_{n-1} 1$, we have $a_2 = y^3 + y + 1 > y^3$, $a_1 = y^5 + y^4 + 3y^2 + y 1 > y^5$, $a_0 = y^6 + 3y^3 y^2 + 1 > y^6$, $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$. Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} 1)^{7n-1}$.
- There is a constant c = 1.264 such that c_i is the closest integer to $c^{2^{i+1}}$ for all $i \ge 0$. This implies the crude statement that $vol(K_X) < \frac{1}{2^{2^n}}$ for all $n \ge 2$.

- In terms of $y = c_{n-1} 1$, we have $a_2 = y^3 + y + 1 > y^3$, $a_1 = y^5 + y^4 + 3y^2 + y 1 > y^5$, $a_0 = y^6 + 3y^3 y^2 + 1 > y^6$, $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$. Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} 1)^{7n-1}$.
- There is a constant $c \doteq 1.264$ such that c_i is the closest integer to $c^{2^{i+1}}$ for all $i \geq 0$. This implies the crude statement that $vol(K_X) < \frac{1}{2^{2^{n}}}$ for all $n \geq 2$.

- In terms of $y = c_{n-1} 1$, we have $a_2 = y^3 + y + 1 > y^3$, $a_1 = y^5 + y^4 + 3y^2 + y 1 > y^5$, $a_0 = y^6 + 3y^3 y^2 + 1 > y^6$, $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$. Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} 1)^{7n-1}$.
- There is a constant $c \doteq 1.264$ such that c_i is the closest integer to $c^{2^{i+1}}$ for all $i \geq 0$. This implies the crude statement that $vol(K_X) < \frac{1}{2^{2^n}}$ for all $n \geq 2$.

- $\bullet \ \frac{\log(vol(K_X))}{\log(vol(K_Y+\Delta))} \to \frac{2^r-1}{2^r} \text{ as } n \to \infty.$
- For r = 3, this is the example above.
- when r = 5, n = 4, it is a a general hypersurface of degree 147565206676 in $P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) with <math>= 7.4 \times 10^{-45}$. (Better)

- $ullet \frac{\log(\mathit{vol}(K_X))}{\log(\mathit{vol}(K_Y+\Delta))} o rac{2^r-1}{2^r} ext{ as } n o \infty.$
- ullet For r=3, this is the example above.
- When r = 5, n = 4, it is a a general hypersurface of degree 147565206676 in $P(73782603338, 39714616165, 28421358181, 5458415771 187980859, 232361) with <math>= 7.4 \times 10^{-45}$. (Better)

- For r = 3, this is the example above.
- When r = 5, n = 4, it is a a general hypersurface of degree 147565206676 in $P(73782603338, 39714616165, 28421358181, 5458415771 187980859, 232361) with <math>= 7.4 \times 10^{-45}$. (Better)

- $\frac{\log(vol(K_X))}{\log(vol(K_Y+\Delta))} \to \frac{2^r-1}{2^r}$ as $n \to \infty$.
- For r = 3, this is the example above.
- When r = 5, n = 4, it is a a general hypersurface of degree 147565206676 in $P(73782603338, 39714616165, 28421358181, 5458415771 187980859, 232361) with <math>= 7.4 \times 10^{-45}$. (Better)

- $\frac{\log(vol(K_X))}{\log(vol(K_Y+\Delta))} \to \frac{2^r-1}{2^r}$ as $n \to \infty$.
- For r = 3, this is the example above.
- When r = 5, n = 4, it is a a general hypersurface of degree 147565206676 in $P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) with = <math>7.4 \times 10^{-45}$. (Better)

- $\frac{\log(vol(K_X))}{\log(vol(K_Y+\Delta))} \to \frac{2^r-1}{2^r}$ as $n \to \infty$.
- For r = 3, this is the example above.
- When r = 5, n = 4, it is a a general hypersurface of degree 147565206676 in $P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) with <math>= 7.4 \times 10^{-45}$. (Better)

Thank you!